محصول | تعداد | ||
---|---|---|---|
0 | (ریال)جمع کل |
مروری بر انواع الکترولیت ها در باتری لیتیوم هوا در ادامه ی بحث، موضوع بسیار مهم تنوع الکترولیت در باتری لیتیم هوا Lithium air battery، مطرح می گردد. چهار نوع الکترولیت برای این باتری فلز هوای مبتنی بر لیتیوم مفروض است که به ترتیب، غیر آبی، آبی، هیبریدی و جامد می باشند. وجود هوا به عنوان تامین کننده اکسیژن، فلز آندی لیتیوم، کاتالیست از مشترکات هر چهار رویکرد می باشد و تفاوت در نحوه ی پیاده سازی الکترولیت می باشد.
در الکترولیت غیر آبی، یک سیال آلی جای خود را به الکترولیت آبی می دهد. کربن متخلخل، معبر ورود هوا به کاتد را عهده می گیرد. در الکترولیت آبی، مواد آلی به سمت پوشش باتری در قسمت معبر ورود هوا می روند. همچنین یک لایه، بین آب و فلز لیتیوم حائل می شود تا مانع از واکنش شدید شود.
در رویکرد هیبریدی، کمی الکترولیت آلی در مجاورت فلز لیتیوم قرار می گیرد. سپس یک لایه حائل و بعد از آن الکترولیت آبی برای تبادل اکسیژن با هوای بیرون تعبیه می شود. در چهارمین رویکرد، اثری از سیال آلی یا آبی نیست. الکترولیت به صورت جامد پیاده سازی می شود. در شکل زیر این چهار رویکرد در پیاده سازی الکترولیت نمایش داده شده است.
مهمترین مشکل رویکرد الکترولیت آبی در باتری لیتیوم هوا Lithium air battery، عدم قابلیت شارژ مجدد می باشد. هر چند معادلات بر روی کاغذ بازگشت پذیر می باشند، اما پیاده سازی موفق و قابل تجاری سازی مشاهده نشده است.
هیدروکسید لیتیوم در این رویکرد تولید شده و احیای فلز لیتیم در مرحله ی شارژ ولو با دریافت انرژی، میسر و سهل نیست. در این رویکرد نمک لیتیوم محلول در آب، به عنوان الکترولیت در نظر گرفته می شود. مخاطرات واکنش شدید لیتیوم با آب نیز در این رویکرد وجود دارد. لذا یک فصل مشترک مصنوعی در اطراف آند لیتیمی لازم است.
در رویکرد الکترولیت آلی، قابلیت شارژ تامین شده و ایمنی تا حد بالایی لحاظ می گردد. چرا که امکان واکنش شدید آب با فلز لیتیم با آسیب دیدن لایه ی فصل مشترک مصنوعی، وجود نخواهد داشت. محصول این نوع Lithium air battery، اکسید لیتیم بوده که با دریافت انرژی، قابل احیا است. اما مشکل دیگر، رسوب و عدم انحلال این اکسید است.
عملا هر دو نوع اکسید لیتیوم با ظرفیت های فلزی مختلف تولید می شود. در این رویکرد نیازی به لایه پوشش مصنوعی برای فلز لیتیم نیست.
در رویکرد هیبریدی، همزمان الکترولیت آبی در مجاورت کاتد هوایی وجود دارد. همچنین الکترولیت آلی در مجاورت فلز لیتیوم در آند مستقر شده است. به عبارتی از مزایای هر دو الکترولیت استفاده شده است. در عین حال با استفاده از یک غشای مناسب، از معایب این دو الکترولیت خصوصا در مجاورت آند با آب و نیز اکسید لیتیوم با کاتد پرهیز می شود.
این غشا برای عبور یون لیتیم مثبت، رسانا است. در این رویکرد، قابلیت شارژ وجود دارد و خطر واکنش شدید فلز لیتیوم با آب نیست. اساسا در مجاورت آند لیتیومی، آب و الکترولیت آبی وجود ندارد. از سوی دیگر، رسوبات اکسید لیتیوم، تخلخل کاتد را از بین نمی برد؛ چون الکترولیت آلی در مجاورت کاتد نیست و اطراف آن را الکترولیت با محلول نمک لیتیم در آب فرا گرفته است.
در رویکرد چهارم، الکترولیت به صورت جامد پیاده سازی شده است. از پلیمر سرامیک برای انتقال یون لیتیوم مثبت استفاده می شود. تا 30 سیکل شارژ و دشارژ موفق در ویرایش الکترولیت جامد، ثبت گردیده است.
محصولات مرتبط